
L-FACTORS AND ε-FACTORS
SEMINAR ON THE PROOF OF LOCAL LANGLANDS

ROBIN ZHANG

1. Notation

• p := a fixed prime

• K := a p-adic field, i.e. a finite extension of Qp
• K := an algebraic closure of K

• OK := the ring of integers of K

• Un(K) := the subgroup of unipotent upper triangular matrices in GLn(K).

2. Generic Representations

Let us recall a few facts and definitions about generic representations.

Definition 2.1. Fix a nontrivial additive quasi-character ψ : K → C×, let

n := max{m ∈ N | ψ(π−m
K OK) = 1, and define

Un(K) K×

(
1 uij

...
1

)
ψ(u12 + . . .+ un−1,n).

θψ

An irreducible and smooth representation π of GLn(K) is generic (or non-

degenerate) if HomUn(K)

(
π|Un(K), θψ

)
is nonzero.

Question 2.2. Which representations are generic?
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Fact 2.3. (1) π is generic if and only if π∨ is generic.

(2) Given any multiplicative quasicharacter χ : K× → C×, π is generic if and

only if χπ := (χ ◦ det)⊗ π is generic.

(3) The choice of ψ does not matter.

Theorem 2.4 (Gelfand-Kazhdan). Every irreducible admissible supercuspidal

representation is generic.

Theorem 2.5 (Bernstein-Zelevinsky). Let π = Q(∆1, . . . , ∆r) be irreducible

and admissible for some intervals ∆. Then π is generic if and only if ∆i, ∆j

are not linked for all i, j ∈ {1, . . . , r}.

Corollary 2.6. Every essentially tempered (and supercuspidal) representation

is generic.

Definition 2.7. Let (π, V) be a generic representation. A Whittaker func-

tional for π is a functional λ : V → C such that λ
(
π(u)v

)
= θψ(u)λ(v) for all

u ∈ Un(K), v ∈ V .

Proposition 2.8. If π is generic, there exists a Whittaker functional for π.

Definition 2.9. Fix a Whittaker functional λ. The Whittaker model for π is

Wπ,ψ :=
{
Wv : GLn(K)→ C |Wv(g) = λ

(
π(g)v

)}
with a GLn(K)-action given by right translation (i.e. gWv =Wgv).

Fact 2.10. (1) Wπ,ψ is irreducible.

(2) v 7→Wv is a GLn(K)-isomorphism.

(3) The Whittaker model Wπ,ψ does not depend on choice of ψ (up to isomor-

phism).

Then we have the multiplicity one theorem.
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Theorem 2.11 (Shalika). The dimension of the space of Whittaker functionals

is at most 1, i.e.

dimC(HomGLn(K)(π, Ind
GLn(K)
Un(K)

θψ) ≤ 1,

so if π admits a Whittaker model then it is unique.

3. GLn(K) side for generic representations

Setup 3.1. Let π and π ′ be smooth irreducible representations of GLn(K)

and GLn ′(K) respectively. Assume π, π ′ are generic. Assume ψ : K → C× is

unitary (i.e. ψ−1 = ψ).

3.1. Case n ′ = n. Let

S(Kn) := {locally constant functions φ : Kn → C with compact support}

denote the Schwartz space on Kn. Let

Z(W,W ′, φ, s) :=

∫
Un(K)

�GLn(K)
W(g)W ′(g)φ ((0, . . . , 0, 1)g) |detg|s dg,

for W ∈Wπ,ψ,W
′ ∈Wπ ′,ψ, φ ∈ S(Kn), and dg is a GLn(K)-invariant measure

on Un(K)
�GLn(K).

Note that Z(W,W ′, φ, s) absolutely converges for Res >> 0 and is a rational

function in q−s. In particular, the set

Z :=
{
Z(W,W ′, φ, s) |W ∈Wπ,ψ,W

′ ∈Wπ ′,ψ, φ ∈ S(Kn)
}

generates a fractional ideal in C[[q−s]][qs] with a unique generator of the form

P(q−s)−1 for some polynomial P ∈ C[x] such that P(0) = 1.

Definition 3.2. Let L(π×π ′, s) be the unique generator of the fractional ideal

generated by Z in C[[q−s]][qs].
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Now we can define the ε-factors. Let wn ∈ GLn(K) be the permutation

matrix corresponding to the longest Weyl group element (i.e. sending i 7→
n + 1 − i). For W ∈ Wπ,ψ, define W̃ ∈ Wπ∨,ψ by g 7→ W

(
wtng

−1
)

and

similarly for W̃ ′ ∈Wπ ′∨,ψ.

Definition 3.3. Define ε(π× π ′, ψ, s) via

Z(W̃, W̃ ′, 1− s, φ̂)

L(π∨ × π ′∨, 1− s)
= ωπ ′(−1)

nε(π× π ′, ψ, s)Z(W,W
′, s, φ)

L(π× π ′, s)
,

where ωπ ′ : Z (GLn(K))→ C× is the central character of (π ′, V ′) and φ̂ is the

Fourier transform of φ.

3.2. Case n ′ < n. For j ∈ {0, . . . , n− n ′ − 1}, define

Z(W,W ′, j, s) :=

∫
Un(K)

�GLn(K)

∫
Mj×n ′ (K)

W



g

x Ij

In−n ′−j


W ′(g) |detg|s−

n−n ′
2 dxdg.

where dx is a Haar measure on Mj×n ′(K) and W,W ′, dg as before. This

converges absolutely if Re(s) >> 0, is a rational function of q−s, and generates

a fractional ideal as we vary W,W ′, j with unique generator.

Again, let L(π × π ′, s) be the unique generator of the fractional ideal gen-

erated by the set of such Z. Additionally, let

wn,n ′ :=

In ′
wn−n ′

 ∈ GLn(K).

Finally, define the epsilon factors as follows.

Definition 3.4. Define ε(π× π ′, ψ, s) via

Z(wn,n ′W̃, W̃ ′, n− n ′ − 1− j, 1− s)

L(π∨ × π ′∨, 1− s)
= wπ ′(−1)

n−1ε(π×π ′, ψ, s)Z(w,w
′, j, s)

L(π× π ′, s)
.
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3.3. Case n ′ > n. Define L(π ′ × π, s) := L(π × π ′, s) and ε(π ′ × π,ψ, s) :=

ε(π ′ × π,ψ, s).

3.4. General facts.

Fact 3.5. (1) The L-factor does not depend on the choice of ψ.

(2) The ε-factor is of the form cq−fs with c ∈ C× and f ∈ Z which depend

only on ψ,π, and π ′.

Proposition 3.6. If π, π ′ are supercuspidal, then

L(π× π ′, s) =
∏

χ:K×→C×
χπ
′∨ ∼=π

L(χ, s).

In particular, if n ′ 6= n, then L(π× π ′, s) = 1.

We then have the following theorem.

Theorem 3.7 (Bushnell-Henniart). For π irreducible and admissible,

ε(π× π∨, ψ, 1/2) = wπ(−1)
n−1.

4. GLn(K) side for arbitrary smooth representations

We now inductively define these factors for more general smooth represen-

tations using the Bernstein-Zelevinsky classification.

Definition 4.1. Let π, π ′ be arbitrary smooth representations. Define

(1) L(π× π ′, s) = L(π ′ × π, s) and ε(π× π ′, ψ, s) = ε(π ′ × π,ψ, s)

(2) If π = Q(∆1, . . . , ∆r), then

L(π× π ′, s) : =
r∏
i=1

L(Q(∆i)× π, s)

ε(π× π ′, ψ, s) : =
r∏
i=1

ε(Q(∆i)× pi,ψ, s).
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(3) If π = Q(∆) with ∆ = [σ, σ(r− 1)] and π ′ = Q(∆ ′) with ∆ ′ = [σ ′, σ ′(r− 1)]

and r ′ ≥ r, then

L(π× π ′, s) : =
r∏
i=1

L(σ× σ ′, s+ r+ r ′ − i)

ε(π× π ′, ψ, s) : =
r∏
i=1

(
r+r ′−2i∏
j=1

ε(σ× σ ′, ψ, s+ i+ j− 1)
r+r ′−2i−1∏

j=1

L(σ∨ × σ ′∨, 1− s− i− j)
L(σ× σ ′, s+ i+ j− 1)

)

Remark 4.2. When π, π ′ are arbitrary smooth representations, they may not

have Whittaker models.

If we have one smooth irreducible representation π, we may also define its

L-factors and ε-factors.

Definition 4.3. Let 1 : K× → C× be the trivial multiplicative character.

L(π, s) : = L(π× 1, s)

ε(π,ψ, s) : = ε(π× 1, ψ, s)

Remark 4.4. (1) If n = 1, then L(π, s) and ε(π,ψ, s) are the local factors

defined in Tate’s thesis.

(2) If n > 1 and π is supercuspidal, then L(π, s) = 1 and ε(π,ψ, s) is given

by a generalized Gauss sum.

Definition 4.5. For (π, V) smooth irreducible and t ∈ Z≥0, let

Kn(t) :=


a b

c d

 ∈ GLn(OK) | c ∈M1×(n−1)
(
πtKOK

)
and d ≡ 1 (mod πtKOK)


Remark 4.6. Note that Kn(0) = GLn(OK).

Definition 4.7. The conductor f(π) of π is the smallest t such that VKn(t) 6= 0.
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Fact 4.8 (Jacquet–Piatetski-Shapiro–Shalika). For π generic and n(ψ) the

exponent of ψ,

ε(π,ψ, s) = ε(π,ψ, 0)q−s(f(π)+n·n(ψ))

5. Galois Side

Let ρ ((r, V), N) be a Frobenius semisimple Weil–Deligne representation.

Let VN be the kernel of N and let V IK be the invariants under the action of IK.

Definition 5.1. For ρ Frobenius semisimple with Φ ∈ WK the geometric

Frobenius, define L(ρ, s) := det
(
1− q−sΦ|

V
IK
N

)−1
.

Proposition 5.2. If ρ and ρ ′ are irreducible Weil–Deligne representations of

dimension n and n ′ respectively, then

L(ρ⊗ ρ ′, s) =
∏

χ:K×→C×unramified
χ⊗ρ∨=ρ ′

L(χ, s).

Remark 5.3. If n ′ 6= n, then L(ρ⊗ ρ ′, s) = 1.

Definition 5.4. Let dimV = 1, i.e. r is a character χ :Wab
K → C×.

(1) If χ is unramified,

ε(χ,ψ, dx) := qn(ψ)(1−s)voldxOK,

where s is given by χ = |·|s.

(2) If r is ramified, then

ε(χ,ψ, dx) =

∫
c−1OK

r−1(ArtK(x))ψ(x) dx,

where c ∈ K× such that the valuation of c is n(ψ) + f(χ) where

f(χ) := min
{
f ∈ Z≥0 | χ

(
ArtK

(
1+ πfKOK

))
= 1
}
,

is the conductor of χ.
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Theorem 5.5 (Langlands, Deligne). There is a unique function ε such that

(1) If dimV = 1, then ε(r, ψ, dx) is as in Definition 5.4.

(2) As a function of Rep(WK), ε(·, ψ, dx) is multiplicative in exact sequences

of representations of WK, so we have a homomorphism

ε(·, ψ, dx) : Groth (Rep(WK))→ C×.

(3) If L ′/L/K is a tower of finite extensions and µL and µL ′ are additive Haar

measures on the Galois groups of L and L ′ over K respectively, and [r ′] ∈

Groth (Rep(WK)) with dim[r ′] = 0, then

ε
(
IndL ′/L[r

′], ψ ◦ trL/K,µL
)
= ε

(
[r ′], ψ ◦ trL ′/K,µL ′

)
.

Remark 5.6. If dimV = 1, ε(r, ψ, αdx) = αε(r, ψ, dx), hence ε(r, ψ, αdx) =

αdim[r]ε(r, ψ, dx). In particular, the choice of dx does not matter if dim[r] = 0.

Definition 5.7. For ρ = ((r, V), N) a Weil–Deligne representation of dimen-

sion n, define

ε(ρ,ψ, s) := ε(|·|s r, ψ, dx) det(−φ|
VIK/V

IK
N

),

where dx is the self-dual Haar measure on K with respect to the Fourier trans-

form by ψ.

Remark 5.8. ε(ρ,ψ, s) is not additive in exact sequences of Weil–Deligne rep-

resentations because taking coinvariants is not exact.

Definition 5.9. Let ρ be an irreducible Weil–Deligne representation of di-

mension n. The conductor f(ρ) is given by

ε(ρ,ψ, s) = ε(ρ,ψ, 0)q−s(f(ρ)+n·n(ψ)).
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Example 5.10 (Sp(m)). Let m ≥ 1. Let V = Ce0 ⊕ . . . ⊕ Cen−1. Define

Sp(m) :=
(
(r, V), N

)
via

Nei = ei+1

Nem−1 = 0

r(w)ei = |w|i ei.

Then VN = Cem−1 = V
IK
N and φei = q

−iei. So

L(ρ, s) = 1/(1− q1−s−m).

Now pick ψ : K× → C× such that n(ψ) = 0 (i.e. ψ(OK) = 1 but ψ(π−1
K OK 6=

1). Then

ε(r, ψ, dx) = q−md
2 = (voldxOK)

m,

where d is the valuation of the absolute different of K. Then

ε(ρ, s,ψ) = (−1)m−1q
−md−(m−2)(m−1)

2
s.

Fact 5.11. Note that ρ is indecomposable if and only if ρ ∼= ρ0 ⊗ Sp(m) with

ρ0 are irreducible and m ≥ 1.

Consequently, ρ determines uniquely m and ρ0 up to isomorphism. Fur-

thermore, every Frobenius semi-simple Weil–Deligne representation is a direct

sum of indecomposable Weil–Deligne representations.

6. Local Langlands Correspondence for GLn over a p-adic field

Recall for convenience,

An(K) : = {irreducible admissible representations of GLn(K)}

Gn(K) : = {Frobenius semisimple complex Weil–Deligne representations of WK of dimension n} .

Finally, we can state the local Langlands correspondence.
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Theorem 6.1 (Local Langlands Correspondence for GLn over a p-adic field).

There is a unique collection of bijections recK,n : An(K)→ Gn(K) such that

(1) For π ∈ A1(K), rec1 = π ◦ Art−1K .

(2) For π1 ∈ An1(K), π2 ∈ An2(K),

L(π1 × π2, s) = L(recn1(π1)⊗ recn2(π2), s)

ε(π1 × π2, s, ψ) = ε(recn1(π1)⊗ recn2(π2), s, ψ).

(3) For π ∈ An(K), χ ∈ A1(K),

recn(πχ) = recn(π)⊗ rec1(χ).

(4) For π ∈ An(K), wπ a central character,

det ◦ recn(π) = rec1(wπ).

(5) For π ∈ An(K),

recn(π
∨) = recn(π)

∨.

Furthermore, this collection does not depend on choice of ψ.
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